
CFGS DAM 2.4 Annex I - System properties and console programming | Process and Service Programming

IES Doctor Balmis 1 / 6

2.4 Annex I - System properties and console programming

PSP class notes (https://psp2dam.github.io/psp_sources) by Vicente Martínez is licensed under

CC BY-NC-SA 4.0  (http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1)

https://psp2dam.github.io/psp_sources
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1


CFGS DAM 2.4 Annex I - System properties and console programming | Process and Service Programming

IES Doctor Balmis 2 / 6

2.4 Annex I - System properties and console programming
I.1 System properties and command shells
I.2 Console I/O format

Console output
Console input
String format
Number format
Colours in console applications

I.1 System properties and command shells

If we plan to code platform independent applications, we have to deal with many issues because of differences between OS. So
sometimes we need to deal with specific OS information. A useful way to get that information is by getting System properties.

Specification System.getProperties
(https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.html#getProperties())

Some examples are provided here using System properties. Similar solutions can be used for other issues.

If we want to run an OS command we have to do it as we usually do, by using the command shell, where once again we find the
troubleshot with UNIX / Windows.

Let's take a look at the way we can use the system properties, once again, to get a list of files in the user personal folder.

File separator

For file path or directory separator, the Unix system introduced the slash character / as directory separator, and the
Microsoft Windows introduced backslash character \ as the directory separator. In a nutshell, this is / on UNIX and \ on
Windows.

Then, ¿how can we code OS independent applications??

In Java, we can use the following three methods to get the platform-independent file path separator.

System.getProperty("file.separator")
FileSystems.getDefault().getSeparator() (Java NIO)
File.separator Java IO

From now on, we are gonna use System properties in our applications for several situations using
System.getProperty(String propName) . These properties are configured by the OS and the JVM, though we can modify

them by setting the JVM running setting

String separator = System.getProperty("file.separator");

or

-Dfile.separator

Nevertheless is always a good practice to use slash character / in paths as Java is able to convert them to the system it is
running on.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.html#getProperties()


CFGS DAM 2.4 Annex I - System properties and console programming | Process and Service Programming

IES Doctor Balmis 3 / 6

Next you can look at a handler event manager for a mouse clic, into a graphic application, to open a web site in a browser. The
code shows how to do it in *X like operating system and one way to do it in Windows systems is commented.

I.2 Console I/O format

non-interactive shell mode

In the previous code example, both for Windows and UNIX modifier c is used for command shells. This modifier tells the
system to open a command shell, to run the companion command and close the shell after it has finished.

System properties

Our first applications in java is not gonna be an easy one.

Using methods from System class and Runtime class, write the code for an app that shows

all the system properties configured in your OS
total memory, free memory, used memory and processors available

Make a research into Runtime class methods. For System properties try to get a list or iterable data estructure to show
each of the system properties and their values.

Character codification

// First we get the user folder path
String homeDirectory = System.getProperty("user.home");

// And then we set which OS are we running on
boolean isWindows = System.getProperty("os.name")

  .toLowerCase().startsWith("windows");

if (isWindows) {
    Runtime.getRuntime()

      .exec(String.format("cmd.exe /c dir %s", homeDirectory));
} else {

    Runtime.getRuntime()
      .exec(String.format("sh -c ls %s", homeDirectory));

}

// Calling app example
public void mouseClicked(MouseEvent e) {

  // Launch Page
  try {

    // Linux version
    Runtime.getRuntime().exec("open http://localhost:8153/go");

    // Windows version
    // Runtime.getRuntime().exec("explorer http://localhost:8153/go");

  } catch (IOException e1) {
    // Don't care

  }
}

java
1

2
3

4
5

6
7

8
9

10
11

12
13

java
1

2
3

4
5

6
7

8
9

10
11

12



CFGS DAM 2.4 Annex I - System properties and console programming | Process and Service Programming

IES Doctor Balmis 4 / 6

Console output

In Java, we can use the System.out  object to print to the console. We can use the println  method to print a line to the

console.

Console input

In Java, we can use the System.in  object to read from the console. We can use the Scanner  class to read from the console.

String format

In Java, we can use the String  class to format the output. We can use the format  method to format the output. This method
is similar to the printf  method in C.

Number format

One aspect to take into account when working with streams is the encoding of the information exchanged between
processes, which depends on the operating system we are working on. Most systems (GNU/Linux, Mac OS, Android,
iOS...) use UTF-8 encoding, based on the Unicode standard.

For its part, MS Windows uses its own formats, incompatible with the rest, such as Windows-1252. So to correctly handle
data in Java when using more advanced inter-process communication mechanisms, it will be necessary to take into
account the type of encoding that the system itself uses.

// Getting the default encoding
System.out.println(System.getProperty("file.encoding"));

// Setting the encoding
System.setProperty("file.encoding", "UTF-8");

// Reading with a specific encoding

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in, "UTF-8"));
// Writing with a specific encoding

PrintWriter writer = new PrintWriter(new OutputStreamWriter(System.out, "UTF-8"));

// Stdin with a specific encoding
Scanner scanner = new Scanner(System.in, "UTF-8");

// Stdout with a specific encoding
System.out.println(new String("Hello, World!".getBytes("UTF-8")));

System.out.println("Hello, World!");

Scanner scanner = new Scanner(System.in);
String name = scanner.nextLine();

String.format("The value of PI is %.2f", Math.PI);

java
1

2
3

4
5

6
7

8
9

10
11

12
13

14

java

java

java



CFGS DAM 2.4 Annex I - System properties and console programming | Process and Service Programming

IES Doctor Balmis 5 / 6

In any programming language we have many different ways to format the information shown to the user. As in this first
applications we are using the console as the system output, let's check the two main techniques we can use in Java

NumberFormat (https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormat.html)

Using NumberFormat class or any of its descendants we can get control on how the numbers are shown with high precision,
using numeric patterns.

System.out.printf (https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Formatter.html)

Similar to C's printf syntax, we can use the java.util.Formatter syntax to set how data is visualized.

Colours in console applications

There is a way to print in different colours when using the console. Here you have got an example code with some colours and
the way to use it.

DecimalFormat numberFormat = new DecimalFormat("#.00");
// Hashes can be used instead of zeros to allow .30 to be shown as 0.3

// (additional digits are optional)
System.out.println(numberFormat.format(number));

System.out.printf("\n$%10.2f",shippingCost);
// numbers after % print preceding spaces to fill 

// and justify numbers.
System.out.printf("%n$%.2f",shippingCost);

public class UsingColoursInConsole {

public static final String ANSI_RESET = "\u001B[0m";
public static final String ANSI_BLACK = "\u001B[30m";

public static final String ANSI_RED = "\u001B[31m";
public static final String ANSI_GREEN = "\u001B[32m";

public static final String ANSI_YELLOW = "\u001B[33m";
public static final String ANSI_BLUE = "\u001B[34m";

public static final String ANSI_PURPLE = "\u001B[35m";
public static final String ANSI_CYAN = "\u001B[36m";

public static final String ANSI_WHITE = "\u001B[37m";

public static final String ANSI_BLACK_BACKGROUND = "\u001B[40m";
public static final String ANSI_RED_BACKGROUND = "\u001B[41m";

public static final String ANSI_GREEN_BACKGROUND = "\u001B[42m";
public static final String ANSI_YELLOW_BACKGROUND = "\u001B[43m";

public static final String ANSI_BLUE_BACKGROUND = "\u001B[44m";
public static final String ANSI_PURPLE_BACKGROUND = "\u001B[45m";

public static final String ANSI_CYAN_BACKGROUND = "\u001B[46m";
public static final String ANSI_WHITE_BACKGROUND = "\u001B[47m";

    public static void main(String[] args) {

        System.out.println(ANSI_GREEN + ANSI_WHITE_BACKGROUND + "Hello" 
                          + ANSI_BLUE + ANSI_YELLOW_BACKGROUND + " Bye bye" + ANSI_RESET);

    }
}

java

java

java

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Formatter.html


CFGS DAM 2.4 Annex I - System properties and console programming | Process and Service Programming

IES Doctor Balmis 6 / 6


	2.4 Annex I - System properties and console programming
	

	2.4 Annex I - System properties and console programming
	I.1 System properties and command shells
	I.2 Console I/O format
	Console output
	Console input
	String format
	Number format
	Colours in console applications



